Zinc signaling through glucocorticoid and glutamate signaling in stressful circumstances.
نویسندگان
چکیده
Humans and animals are constantly exposed to environmental stress. The hypothalamic-pituitary-adrenal (HPA) axis responds to stress, followed by glucocorticoid secretion from the adrenal glands. This response serves to maintain homeostasis in the living body through energy mobilization or to restore it. The brain is an important target for glucocorticoids. The hippocampus participates in the regulation of the HPA axis. Stress activates glutamatergic neurons in the hippocampus, and serious stress induces dyshomeostasis of extracellular glutamate. This dyshomeostasis, which is potentiated by glucocorticoids, modifies cognitive and emotional behavior. On the other hand, zinc is necessary for glucocorticoid signaling and is released from glutamatergic (zincergic) neurons to modulate synaptic glutamate signaling. Stress also induces dyshomeostasis of extracellular zinc, which may be linked to dyshomeostasis of extracellular glutamate. Thus, glucocorticoid signaling might also contribute to dyshomeostasis of extracellular zinc. It is likely that zinc signaling participates in cognitive and emotional behavior through glucocorticoid and glutamate signaling under stressful circumstances. This Mini-Review analyzes the relationship among signals of glucocorticoid, glutamate, and zinc under stressful circumstances to elucidate the significance of the zinc signaling in response to stress.
منابع مشابه
Cognitive decline due to excess synaptic Zn2+ signaling in the hippocampus
Zinc is an essential component of physiological brain function. Vesicular zinc is released from glutamatergic (zincergic) neuron terminals and serves as a signal factor (Zn(2) (+) signal) in both the intracellular (cytosol) compartment and the extracellular compartment. Synaptic Zn(2) (+) signaling is dynamically linked to neurotransmission and is involved in processes of synaptic plasticity su...
متن کاملStress, epigenetic control of gene expression and memory formation.
Making memories of a stressful life event is essential for an organism's survival as it allows it to adapt and respond in a more appropriate manner should the situation occur again. However, it may be envisaged that extremely stressful events can lead to formation of traumatic memories that are detrimental to the organism and lead to psychiatric disorders such as post-traumatic stress disorder ...
متن کاملPotential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review
Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activat...
متن کاملMaking Memories of Stressful Events: A Journey Along Epigenetic, Gene Transcription, and Signaling Pathways
Strong psychologically stressful events are known to have a long-lasting impact on behavior. The consolidation of such, largely adaptive, behavioral responses to stressful events involves changes in gene expression in limbic brain regions such as the hippocampus and amygdala. However, the underlying molecular mechanisms were until recently unresolved. More than a decade ago, we started to inves...
متن کاملCortisol stimulates the zinc signaling pathway and expression of metallothioneins and ZnT1 in rainbow trout gill epithelial cells.
Intracellular zinc signaling is important in the control of a number of cellular processes. Hormonal factors that regulate cellular zinc influx and initiate zinc signals are poorly understood. The present study investigates the possibility for cross talk between the glucocorticoid and zinc signaling pathways in cultured rainbow trout gill epithelial cells. The rainbow trout metallothionein A (M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience research
دوره 88 14 شماره
صفحات -
تاریخ انتشار 2010